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Abstract
This paper gives an overview of the coarse-grained models of phospholipids recently
developed by the authors in the frame of a hybrid particle–field molecular dynamics technique.
This technique employs a special class of coarse-grained models that are gaining popularity
because they allow simulations of large scale systems and, at the same time, they provide
sufficiently detailed chemistry for the mapping scheme adopted. The comparison of the
computational costs of our approach with standard molecular dynamics simulations is a
function of the system size and the number of processors employed in the parallel calculations.
Due to the low amount of data exchange, the larger the number of processors, the better are the
performances of the hybrid particle–field models. This feature makes these models very
promising ones in the exploration of several problems in biophysics.

1. Introduction

Simulation approaches aimed at accessing long time and
length scales are relevant for a successful modeling
strategy. In particular, these approaches are suitable for
the typical problems of molecular crowding and more
generally for biomolecular processes. Molecular dynamics
(MD) simulations for the study of these processes have
been performed for a long time [1–4]. However, these
simulations are still computationally very expensive when
studying processes occurring on the mesoscopic time (>μs)
and length scales (>100 nm). Therefore, to overcome this
problem, alternative computational methods aiming to bridge
the time and length scales involved in the relevant phenomena
are constantly being proposed [5–7].

Among the several types of biomolecules, phospholipids
are an important class. When they are in water their
amphiphilic structure allows them to self-assemble into a

lipid bilayer with lipid tails shielded from the water and
polar head groups exposed to the polar environment. In living
organisms, lipid bilayers form cellular membranes. Biological
membranes are very complex systems and macromolecular
crowding at membrane interfaces has been studied using model
peptides, which upon membrane adsorption can adopt peculiar
transmembrane, as well as in-planar, configurations [8].

The aim of this paper is to give an overview of the coarse-
grained (CG) models of phospholipids that have recently been
developed by the authors in the frame of a hybrid particle–
field MD technique. This technique employs a special class
of CG model that are gaining popularity because they allow
simulations of large scale systems using a reasonable amount
of computational resources and are useful when approaching
the problems of complex biomolecular systems.

The paper is organized as follows. Section 2 is devoted to
a brief overview of CG models of phospholipids. In section 3

1478-3975/13/045007+16$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/1478-3975/10/4/045007
mailto:gmilano@unisa.it
http://stacks.iop.org/PhysBio/10/045007


Phys. Biol. 10 (2013) 045007 G Milano et al

the basics of the hybrid particle–field MD technique and
its implementation for parallel architecture is reviewed. In
section 4 the description of the models, their validation and
the main results are reviewed.

2. Coarse-grained models of phospholipids

For their relevance in biology, lipid bilayers have attracted
the attention of the computational biophysics community.
Recently, CG simulations have become a very popular method
for the study of these systems. The CG approach exploits the
reduction of the degrees of freedom in the atomic model of
the simulated system by combining several atoms into a single
particle (‘effective bead’). CG methods have been successfully
used to approach several problems involving polymers [9–11],
biomolecules [12–15] and more generally soft matter [16, 17].

For phospholipids, different types of CG models have
been developed. For a complete overview, the reader should
refer to a number of recent reviews [6, 12–15]. Starting from
Smit’s [18] seminal study, in which an off-lattice CG model for
lipids and water was introduced, several CG models have since
been developed. Sintes and Baumgärtner [19, 20] developed
a CG model for lipid bilayers where the solvent was taken
into account implicitly. Later, Lenz and Schmid extended
the implicit-solvent model to pure lipid bilayers composed
of saturated lipids [21]. Goetz and Lipowsky introduced an
explicit-solvent CG model for lipid membranes where a binary
Lennard-Jones fluid for the solvent and a short chain of beads
for the amphiphilic molecules were used [22].

The degree of coarse-graining of a model is related to
the type of process that one wants to investigate. CG models
having a low discrimination of the chemical details of the
molecule can be successfully applied to study self-assembly
phenomena involving many molecules when the microscopic
chemical structures of the constituent molecules are expected
to be irrelevant for the process; systems can only be described
by a small number of key properties, e.g., the amphiphilic
nature of the molecules. Usually for membrane systems, the
clear separation in length, time and energy scales assumed in
this approach is often missing and the chemical specificity of
the target systems needs to be taken into account in the models.
Furthermore, these simple models can fail to reproduce more
complex phenomena involving specific interactions of the
membrane with other biomolecules (e.g. proteins or peptides).
In these cases, the nature of the CG models limits their
application range.

To avoid these drawbacks, CG models that provide
sufficiently detailed chemistry have been built. These CG
models usually employ several different types of beads
(not just hydrophobic and hydrophilic) referring to specific
groups of atoms; in the literature there are several examples
of such models [18, 23–29]. A widely explored example
of this approach is the MARTINI model developed by
Marrink et al [30]. The phospholipids in the MARTINI
model are described by beads having different Lennard-
Jones type interaction parameters that can smoothly modulate
their hydrophobic/hydrophilic character. Furthermore, water
molecules are treated explicitly with a CG reduction scheme

of four molecules to one. Despite its apparent simplicity,
the MARTINI force field is, with fairly good accuracy, able
to reproduce the properties of self-assembled lipid bilayers
[31–33]. In particular, the mapping scheme adopted in the
MARTINI model is close to atomistic models, consisting of
beads each of which represents a few atoms (usually 3 atoms
in one bead, 3:1 mapping): the MARTINI model enables
the study of specific phospholipids and the effect of various
molecules on membranes (for instance butanol [34], DMSO
[35], dendrimers [36] and proteins [37]). On the other hand,
computational approaches based on different representations
(fields) have been proposed to model soft matter problems.
In particular, in the frame of the self-consistent field (SCF)
theory, the model systems are not represented by particles but
by density fields; the mutual interactions between segments
are decoupled and replaced by an interaction between the
segments and static external fields [38]. The external fields
in the SCF theory depend on the statistical average of
the spatially inhomogeneous density distributions of the
segments of independent molecules, which only interact
through these fields. Such external fields and their particle
density distributions have to be determined self-consistently.
Numerous applications to block copolymers [39–42],
proteins [43], polymer composites [44] and colloidal particles
[45, 46] have shown that the SCF theory is a useful and
powerful method.

Several studies have been reported in literature to study
mixtures of phospholipids and water using a field-based
approach. The first field model of lipid molecules was proposed
by Marcelja [47]. According to Marcelja’s model, the head
groups of the lipid molecules are modeled using a boundary to
which the tails of the lipid molecules are anchored. The degrees
of freedom corresponding to intra-molecular rearrangement
are sampled using the rotational isomeric state (RIS) model,
where the segments are coupled through an anisotropic
aligning potential [47]. The inequivalence of the tail, head
and solvent segments allows one to describe the bilayers
as pre-assembled structures; it does not allow for the study
of self-assembly. A fully self-consistent approach capable
of describing stable, tensionless, self-assembled bilayers
was introduced later. Both random-chain and the RIS-chain
model result in membranes with qualitatively similar segment
distributions and with similar thermodynamic properties
[48]. Quantitatively, however, this approach underestimates
the experimentally measured membrane thickness by
about 50% [6].

More recently, molecular-level SCF theories that are able
to describe phospholipids have been developed [6]. The main
idea of these SCF techniques is to split up the calculation
of multibody interactions in two procedures: i.e. to find the
ensemble averaged conformation distribution and to find the
segment potentials based on the segment distribution. For
this aim, a set of partial differential equations are solved
numerically using lattice approximations and a discrete set
of coordinates, onto which segments can be placed, has to
be defined. Layers are kept imposing reflecting boundary
conditions to assure multilamellar system. Parameters are
defined so that the results of the MD simulations are
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reproduced by those of the SCF simulations [48]. Müller and
Schick [49] proposed a novel approach developing an off-
lattice representation of the field theory; they obtained the
single-chain partition function via a partial enumeration [50]
over a large set of molecular conformations of a lipid chain
with RIS statistics. Also in the case of a single lipid in an
external field, as the partition function cannot be obtained
analytically for a realistic molecular architecture, one has to
approximate the probability distributions of the conformations
of non-interacting lipid molecules by a representative sample
of single lipid conformations.

More recently, the single chain in mean field (SCMF)
method introduced by Müller et al, in which a density field
is kept static for a number of Monte Carlo steps, has been
successfully applied to homopolymer and block copolymer
systems [51–53].

One of the advantages of this hybrid approach is the lack
of any limitation in treating complex molecular architectures
and/or intramolecular interactions. In the frame of the hybrid
scheme proposed by Müller, this approach has recently
been extended to molecular dynamics (MD) simulations. In
particular, the MD method has been combined with SCF
description (MD-SCF); an implementation suitable for the
treatment of atomistic force fields and/or specific CG models
has been reported and validated [54, 55].

Particle based CG models like MARTINI are still
computationally demanding when compared to SCF
approaches. On the other hand, SCF approaches assure
accessibility to larger length and time scales but at the
cost of very low chemical specificity. The idea behind the
combined MD-SCF method and the corresponding lipid
models is to obtain a strategy, as far as is possible, having
the main advantages and avoiding the main disadvantages
of the SCF and MD techniques. After the introduction of
the MD-SCF approach, this kind of hybrid model, due
to its computational efficiency (quantitative comparisons
between the computational costs of SCF approaches, hybrid
particle–field and standard MD simulations are reported in
section 3.4), is also gaining popularity for biomembranes
modeling. In particular, a solvent-free CG model for lipid
bilayer membranes, where non-bonded interactions were
treated by a weighted-density functional, has been introduced
by Hömberg and Müller [56]. Very recently, Sevink et al
introduced a hybrid scheme, combining Brownian dynamics
(BD) and dynamic density functional theory (DDFT), that is
able to model efficiently complete vesicles with molecular
detail [57].

In the following the basic theoretical scheme of MD-SCF
simulations and its implementation also for parallel computer
architectures will be described.

3. Hybrid particle–field molecular dynamics

3.1. Theoretical scheme

In this section, a description of the hybrid particle–field
MD simulation scheme is given. For further details and a
complete treatment of this approach the readers can refer to

[33, 34] where the derivation and the implementation have
been introduced and to [38, 58] for a general aspect of SCF
methods.

According to the spirit of SCF theory, the main approach
of the hybrid particle–field method is to reduce a many body
problem, like molecular motion in many particle systems,
to the problem of deriving the partition function of a single
molecule in an external potential V(r) and to obtain a suitable
expression of the V(r) and its derivatives. In this way the
evaluation of the forces between non-bonded atoms and
the potential between atoms of different molecules, i.e. the
most computationally expensive part of MD simulations, is
reformulated as an evaluation of the external potential that
depends on the local density at the atomic positions.

A molecule in SCF theory is considered to be interacting
with the neighboring molecules not directly but only through
an averaged density field. The Hamiltonian of a system
composed of M molecules, according to this picture, can be
split into two parts as Ĥ(�) = Ĥ0(�) + Ŵ (�). Assuming the
canonical ensemble (NVT-ensemble), the partition function of
this system is:

Z = 1

M!

∫
d� exp{−β[Ĥ0(�) + Ŵ (�)]}, (1)

where � is used as shorthand for a set of positions of all atoms
in the system, which specifies a point in the phase space.
In equation (1) and also in the following, the symbol ˆ (hat)
indicates that the associated physical quantity is a function
of the microscopic states described by the phase space �.
Ĥ0(�) is the Hamiltonian of a reference ideal system composed
of M non-interacting chains but with all the intramolecular
interaction terms (bond, angle, etc) that are taken into account
in the same way as in the standard MD simulations. On the
other hand, the deviation from the reference system due to
the intermolecular non-bonded interactions is accounted for
by the term Ŵ (�) in equation (1).

The microscopic density, i.e. the density distribution of
atoms as a function of the positions of point particles, can be
defined as a sum of delta-functions centered at the center of
mass of each particle as:

φ̂(r, �) =
M∑

p=1

N(p)∑
i=0

δ
(
r − r(p)

i

)
, (2)

where r(p)

i is the position of the ith particle belonging to the
pth molecule and N(p) is the number of particles contained in
the pth molecule.

The deviation Ŵ(�) from the reference state Ĥ0, according
to equation (1), originates from the interactions between
molecules. To evaluate this interaction term Ŵ(�), several
assumptions can be introduced. The first assumption is that
Ŵ(�) depends on � but not directly and only through the
particle density φ̂(r;�) as:

Ŵ (�) = W [φ̂(r, �)], (3)

where W [φ̂] is a functional of φ̂(r, �).
Under this assumption and using the definition of

δ-functional, the partition function in equation (1) can be
rewritten as:
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Z = 1

M!

∫
D{ϕ(r)}

∫
D{w(r)} exp

{
− β

[
− M

β
ln z

+W [ϕ(r)] −
∫

drV (r)ϕ(r)

]}
(4)

where w(r) is a conjugate field of ϕ(r) that appeared in the
Fourier representation of the δ-functional and z is the partition
function of a single molecule in an external potential V(r)
defined as:

z[V (r)] =
∫

d�1 exp

[
−β

{
ĥ0(�1) +

∑
i

V (ri)

}]
, (5)

where �1 ≡ {ri} is the phase space of a single molecule and
ĥ0(�1) is the Hamiltonian of an isolated molecule.

A mean field approximation, in terms of this partition
function, can be obtained by replacing the integrals over ϕ(r)

and w(r) in equation (5) with a Gaussian integral around the
most probable state, which minimizes the argument of the
exponential function on the right-hand side of equation (4)
(so-called saddle point approximation).

The conditions of such a minimization in the form of
functional derivatives give the following:⎧⎪⎪⎨

⎪⎪⎩
V (r) = δW [ϕ(r)]

δϕ(r)

ϕ(r) = − M

βz

δz

δV (r)
= 〈φ̂(r;�)〉 ≡ φ(r)

. (6)

Using equation (6), it is possible to obtain an expression
for the density dependent external potential acting on each
molecule.

Now we extend the above formulation to multi-component
systems. In such a case, the interaction term W, where each
component species is specified by an index K, is assumed to
have the following form

W [{φK (r)}] =
∫

dr
(

kBT

2

∑
KK′

φK (r)φK′ (r)

+ 1

2κ

(∑
K

φK (r) − 1

)2)
, (7)

where the second term of the integrand on the right-hand side is
the relaxed incompressibility condition, φ0 is the total number
density of segments (we assume the same volume for all
segment species) and κ is the compressibility that is assumed
to be sufficiently small. Then, the corresponding mean field
potential acting on the K-species is given by

VK (r) = δW [{φK (r)}]
δφK (r)

= kBT
∑

K′
χKK′φK′ (r) + 1

κ

(∑
K

φK (r) − 1

)
. (8)

Let us give a simple example, i.e. a case of a mixture of
two components A and B. In this case the mean field potential
acting on a segment of type A at position r is given by:

VA(r) = kBT [χAAφA(r) + χABφB(r)] + 1

κ
(φA(r)

+ φB(r) − 1). (9)

The force acting on segment A at position r imposed by
the interaction with the density field is:

FA(r) = −∂VA(r)

∂r
= −kBT

(
χAA

∂VA(r)

∂r
+ χAB

∂φB(r)

∂r

)

− 1

κ

(
∂φA(r)

∂r
+ ∂φB(r)

∂r

)
. (10)

In figure 1, the pictures of the density fields generated by
a single lipid molecule (DPPC molecule) (bottom left) and the
lipid bilayer assembly (top left) are depicted. Going from left
to right the density resolution increases and at extreme right
the particle models are depicted. In the figure, we report the
main equations: the functional derivative giving the external
potential (equation (6)), the definition of microscopic density
(equation (2)) and the procedure with which the CG density
φ(r) is given starting from particle positions (equation (11),
given below). In the following the implementation of the
MD-SCF approach, also for parallel computer architecture,
will be reviewed.

3.2. Implementation

The MD algorithm (schematized in figure 2(A)) is
implemented in the frame of particle–field approximations in
the following way. The initial value of the external potential
dependent on the density field is obtained from the initial
configuration of the system (at time t0). The potential energy
is the sum of the intramolecular interaction potentials (bond,
angles and other possible intramolecular interactions like
dihedrals etc) and the external potential dependent on the
density field. A new configuration is obtained by integrating
the equation of motion of the particles from time t0 to time
t0 + 
t (in the practice case we used the velocity Verlet
algorithm as implemented in OCCAM [59]). At every prefixed
density update time (
tupdate), the density is updated according
to the positions of the particles in the simulation box. From
the updated value of the density, a new value of the potential
energy is calculated and then new forces are obtained. During
the simulation the particle motions will contribute to a change
in the spatial distribution of the density and this will cause a
change in the density dependent self-consistent potential.

S̄{φ̂(r;�)} = φ(r). (11)

From a technical point of view, the most relevant part of
the theoretical framework described in the previous section is
the way to obtain a smooth CG density function φ(r) from the
particle positions �. This procedure is symbolically denoted
in equation (11) and reported in figure 2. According to this
procedure, first the simulation box is divided into several
subcells and according to the positions of the particles in each
of the simulation boxes, they are distributed among these cells.
The values of the density field at the mesh points (vertices
of the subcells) are defined by assigning fractions of each
particle to its neighboring sub cell mesh point, according to the
distances from the particle to the mesh point (see figure 2(B)).
In this way the density function φ(r) is defined on a three-
dimensional lattice and spatial derivatives of the density fields
used for the calculation of the forces (equation (10)) are
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Figure 1. Graphical representation of the density field originating from a single DPPC molecule and a bilayer assembly.

obtained on a lattice staggered with respect to that for φ(r).
During the simulations, the values of the density function and
its derivatives are evaluated at position r between lattice points
using linear interpolation of the values at neighboring lattice
points.

It is worth noting that the most time consuming part
of the simulation (i.e. the evaluation of intermolecular
forces calculated in a double loop over particle pairs) has
been skipped completely; it is replaced by an evaluation
of a particle–field interaction term originating from the
interaction of individual molecules with the density field φ(r).
Furthermore, due to the CG nature of a collective field, it is
possible to fix a time interval update without loss of accuracy.
This choice is in agreement with the concepts behind the quasi-
instantaneous field approximation discussed by Daoulas et al
in the framework of SCMF Monte Carlo simulations [51].
The main assumption is that the field, as a collective variable
with respect to particle coordinates, has a slow change with
respect to a particle’s displacement in one or more time-steps.

In this way, in MD-SCF simulations there are two time-
steps. The first ‘microscopic time-step’ is the usual one for
the particle’s displacement used in MD simulations and the
second ‘mesoscopic time-step’ is for the field update. The
quasi-instantaneous field approximation can be compared with
methods using different time-integration steps for ‘stiff’ and
‘soft’ degrees of freedom, albeit not in the context of a field-
theoretical representation of interactions. A popular example
of this is MD algorithms with multiple time scales, introduced
by Tuckerman et al [60]. The optimal value of the updated
frequency depends on the density resolution (i.e. the size of
the subcell where the particles are grouped), the system’s
nature and its conditions. For the systems considered here
and reported in [54, 55, 61–63], we found that the value of

tupdate of the order of 100 time-steps gives accurate enough
results (this aspect will also be considered in section 4).
This approximation is relevant to enhance the computational
performance, especially in parallel applications. This point
will be discussed in more detail in the next section.
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(A) (B)

Figure 2. (A) Work flow chart of the iteration scheme for hybrid MD-SCF simulations. (B) Assignment of coarse-grained density to the
lattice points for a phospholipid (top). Criterion for assignment of a particle fraction to lattice points (down).

3.3. Pressure calculation

The calculation of pressure profiles and the implementation
of tensionless simulations are important ingredients of lipids
models. The first step towards this is the calculation of the
stress tensor for a hybrid particle–field Hamiltonian, which
is not a trivial task. Only recently has a general formulation
for the calculation of instantaneous pressure and the stress
tensor in MD-SCF simulations been developed [55]. Recently,
Kremer and Daoulas implemented a ‘volume-changing’ move
used in NPT simulations of standard potential-based models
[64] for this kind of hybrid particle–field simulation.

The scheme developed for MD-SCF simulations is
derived from the statistical mechanical definition of the
pressure. In particular, starting from the expression of the free
energy functional obtained using the SCF theory for a melt
consisting of M homopolymer molecules:

F[φ(r)] = −kBT ln zM + W [φ(r)] −
∫

drV (r)φ(r)

+ kBT (M ln M − M). (12)

In order to calculate the pressure tensor, a virtual
displacement r′ = r + u(r), which leads to a change in the
volume element dr′ = dr(1 + ∇ · u), can be considered. We
then have the following expressions for φ and V in the
coordinate r′:

φ′(r′) = φ(r) − φ(r)(∇ · u),

V ′(r′) = V (r) − V (r)(∇ · u). (13)

Considering the transformation of the first three terms of
the free energy expression given above, it is possible to write
the stress tensor. The fourth term is the mixing entropy of the
molecules’ centers of mass.. Because this mixing entropy is
a constant, it is possible to neglect it. In this way, a general
expression of the pressure tensor for a multi-component system
is given by:

�αβ =
{

− MkBT

〈(
1 + β

∑
i

V (ri )

)〉

− kBT
1

2v

[∑
KK′

χKK′

∫
dr(φK (r)φK′ (r))

]

+ 1

2kv

[∫
dr

(
1 −

∑
K

φ(r)2

)]

+
[

1

v

∑
K

∫
drφK (r)VK (r)

]}
1

3
δαβ. (14)

An implementation of the derived formulation suitable for
hybrid particle–field MD-SCF simulations can be obtained. In
particular, by construction, the density field is a much slower
variable than the positions of individual particles. For this
reason, in the particle–field contribution to the pressure tensor
(first addend of equation (14)), the density field is expanded
around the atomic positions. By expanding the first term
of equation (14) around the atomic positions, the following

6
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contribution of the particle–field interactions to the pressure
tensor can be obtained:

�αβ = kBTδαβ

〈
1 +

N∑
i=1

[
χφ(ri,0) + β

κ
(φ(ri,0) − 1)

]

+
N∑

i=1

(
χ + β

κ

) ∑
α

∂φ(ri,0)

∂(ri,0)α
(
ri)α

+ 1

2

N∑
i=1

(
χ + β

κ

) ∑
α

∑
β

∂2φ(ri,0)

∂(ri,0)α∂(ri,0)β

× (
ri)α(
ri)β

〉
. (15)

The zeroth order term in the diagonal components, i.e.∑N
i=1 [χφ(ri,0) + β

κ
(φ(ri,0) − 1)] ≡ VPF , is the contribution

from the total interaction energy between the particles
and the field VPF1 ≡ ∑N

i=1 χφ(ri,0) and the contribution from
the incompressibility condition VPF2 ≡ ∑N

i=1
β

κ
(φ(ri,0) − 1).

The first order term in 
ri of the above equation is the sum
over all the particles due to the interaction with the field by the
particle displacement. A series of test simulations on model
systems have been reported comparing the calculated pressure
with those obtained from standard MD simulations based on
pair potentials [55]. The evaluation of both the zeroth and the
first order terms of the pressure tensor only involves quantities
that have already been calculated during a MD simulation (i.e.
the total particle–field interaction energy and the forces due
to the interaction between the particles and the density field).
Thus, the calculation of the stress tensor does not imply any
extra computational costs. This approach has been validated
and compared against particle–particle simulations for simple
test systems (homopolymer and block copolymer melts). In
particular, in figure 3, the behavior of the pressure as a function
of the density for a homopolymer melt is reported from [55].

In the framework of the scheme described above,
the implementation of tensionless simulations is under
development and will make it possible to evaluate bending
stiffness, which measures the energetic cost per unit area due
to local curvature [25, 65].

3.4. Parallelization scheme

A further way to achieve larger length and time scales in
molecular simulations is the exploitation of parallel computer
hardware. There are two main ways to achieve parallelization,
depending on the features of parallel architectures, which
are extensively applied for parallelizing MD algorithms:
shared memory through OpenMP [66] and distributed memory
through the MPI (message passing interface) [67]. In the
framework of the model of distributed memory through the
MPI, several strategies of parallelization of a MD simulation
program have been reported [68–77]. The most straightforward
way of affording this is to distribute a subgroup of molecules
into each processor thereby fixing the chosen distribution for
the duration of the simulation, which is called particle–(atom)
decomposition. In figure 4(A), the main parallelization strategy
is schematized. Molecules are distributed among processors,
the density field calculation is operated in a parallel fashion

Figure 3. Comparison between particle–particle and particle–field
models in the pressure calculation at different densities.

giving the partial densities calculated on each processor. A
summation operation is operated when it is needed to update
the density field. The latter is the only process in which
communication between processors is needed.

Several benchmarks performed on the different systems
show that the two main parameters (the density-update
frequency and the size of the subcell) characterizing the
density coarse-graining are very important in regulating the
performances of parallel runs [78]. Considerable speedups
have been achieved, especially when it is possible to update
the density field with a low frequency. In figure 4(B), the
benchmarks (number of steps/second) obtained by simulating
a monoatomic fluid of 500 000 particles in comparison with the
GROMACS code are reported. From the figure is clear that in
all cases good performances can be obtained, especially when
the update frequencies are larger than 100 time-steps.

In general, pure field models (not based on particles,
only on SCF theory) are much less computationally expensive
compared with particle based simulations. Typical applications
of the pure SCF approach are simulations of block-copolymer
mesophases with domain features on the 10 nm scale. A recent
paper by Stasiaka and Matsen [79] examines the computational
costs of SCF theory for the gyroid and spherical phases
of diblock-copolymer melts. These calculations differ from
molecular simulations as they typically need fewer iterations
(from 20 to 100) to converge to equilibrium density fields. For
these systems, an equilibrium density field can be obtained,
using a 2.66 GHz Intel Xeon × 5650 processor, in a time
duration from several seconds to 1 h, depending on the type
of phase and the strength of phase separation. We recently
performed particle–field simulations of similar systems of
triblock copolymers in water [63]. To obtain equilibrium
morphologies for these systems, usually simulations of the
order of several μs have to be performed. To give a rough
image of a comparison, a system with a box length of about
40 nm (consisting of 500 000 particles) has been considered.
Using typical grid spacing and field update frequency (grid
size 0.705 nm, field update every 300 steps), such a simulation
can take about two days on 64 processors (2.33 GHz Intel
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(A) (B)

Figure 4. (A) Density-update parallelization strategy. An example of eight molecules assigned to four processors is shown. (I) System
containing eight molecules in the three-dimensional box. (II) Partition of the eight molecules into four groups assigned to four different
processors. (III) Calculation of the partial density on the vertices of subcells according to the positions of molecules. (IV) Total density is
summed from the partial density of each processor. (B) Performances of parallel MD-SCF program as the step/s for monoatomic fluid
system in comparison with GROMACS 4.5.4 (green curve). Results of OCCAM using 39 304 lattice points (red curves) and 238 328 lattice
points (purple curves) are shown. Particle–field MD simulations have been done using update frequencies of 100 time-steps (empty symbols
and dash-dot lines) and 300 time-steps (filled symbols and solid lines), respectively.

E5345). The ratio between the computational times for the
particle–field approach to the standard MD simulations is a
function of the system size and the number of processors
employed. In particular, due to the low amount and less
frequent data exchange, the larger the number of processors,
the better the performance of the MD-SCF method. For
instance, for the system reported in figure 4(B), the particle–
field simulations can take from 40% (using 16 processors) to
12% (using 64 processors) of the CPU time needed for state-
of-the art particle–particle simulations. In summary, to obtain
equilibrium self-assembled morphologies for comparable
systems with domain features on the 10 nm scale, pure SCF
theory models need computation times of the order of seconds–
hours whereas hybrid MD-SCF simulations take days and
standard MD simulations take weeks. More details about
parallel code performances and their implementation can be
found in [78].

4. Simulation results of hybrid particle–field models
of phospholipds

4.1. Description of models

As described in section 2, according to the formulation
of hybrid MD-SCF models, the intramolecular bonded
interactions (bond, angles, etc) can be described using
traditional force fields that are suitable for molecular
simulations. Our choice has been to develop a hybrid MD-
SCF model based on the description that it is able to
retain the chemical specificity. The coarse-graining scheme
proposed by Marrink et al has been considered suitable for
this purpose [61]. The advantages of these types of models,

intermediate between atomistic and generic CG models, are
that the parameterization of the interaction potentials is not
tailored to a specific lipid and different phospholipids can
be described from a small set of bead types. In figure 5(A),
the coarse-graining mapping scheme and the underlying
atomistic structures are exemplified for the phospholipid
dipalmitoylphosphatidylcholine (DPPC).

Bond and angle interaction potentials, according to the
formulation of the MD-SCF method, have the same functional
form and parameters as those in the original MARTINI force
field [30]. All non-bonded interactions are calculated using the
assumption that each CG bead interacts with the density fields.

According to equation (8), in order to calculate the MD-
SCF potential, several mean field parameters χKK′ between a
particle of type K with the density field due to particles of
type K′ are needed. A first value for these parameters can be
obtained by following the Flory–Huggins approach for the
calculation of χ parameters for lattice models:

χKK′ = zCN

kBT

[
2uKK′ − (uKK + uKK′ )

2

]
, (16)

where uKK′ is the pairwise interaction energy between
a pair of adjacent lattice sites occupied by beads of
types K and K′. These interaction energies can be set as
uKK′ = −εKK′, where εKK′ are the Lennard-Jones ε parameters
for the corresponding pairwise Lennard-Jones interactions.
The coordination number zCN in equation (16) takes the
value 6 for a three-dimensional simple cubic lattice. For
lipid molecules, the χ parameters obtained in this way have
been found to be a good starting point; some refinements
are needed to reproduce reference data [61]. Finally, in
order to determine the value of the parameter κ , which
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(A) (B)

Figure 5. (A) Adopted CG scheme for the phospholipid DPPC. One CG bead corresponds to four atoms. (B) Chemical structures of the four
phospholipids considered. For the DOPC phospholipid, the mapping for beads of type D, including carbon atoms involved in a double bond,
is shown.

regulates the strength of the incompressibility condition
imposed in equation (8), the behavior of density fluctuations
in the reference MD simulations can be analyzed. This
parameter then can be fixed to reproduce the behavior of
the reference simulations. Furthermore, the choice of using
χ parameters derived from particle–particle models showing
thermodynamic consistency would also suggest reasonable
thermodynamic behavior for the particle–field model. Of
course this criterion is only indirect. The challenge of a good
CG model is to obtain, as far as is possible, a reasonable
description of both the structural and thermodynamic behavior.
To have a full validation of the thermodynamics behavior,
suitable free energy calculation protocols are needed for
hybrid particle–field models. Extensive investigation involving
free energy calculations, similar to the ones proposed in the
literature to validate CG models in comparison with atomistic
simulations [80], will further improve these particle–field
models.

4.2. Lipid structures reproduction

Together with DPPC, the structures of three other differ-
ent phospholipids are depicted in figure 5(B). In particular,
three biologically relevant lipids, i.e. dimyristoylphosphatidyl-
choline (DMPC), distearoylphosphatidylcholine (DSPC) and
dioleoylphosphatidylcholine (DOPC), are shown. Due to the
straightforward way of representing the corresponding atom-
istic structure, tiny differences between the different lipids on
the atomistic level can be taken into account. For the lipids de-
picted in figure 4, the main difference between DMPC, DPPC
and DSPC is in the numbers of carbon atoms present in the
hydrophobic tails. In this case, at CG level the models differ
only in the number of type C beads that form the tails, while
the parameters for the non-bonded, bond and angle potentials
are the same. The presence of a double bond in the case of

DOPC requires an extra particle type corresponding to four
atoms including a double bond (see figure 5(B), type D bead).

In figure 6, the total electron density profiles obtained from
the particle–field models calculated and from experiments are
compared (part A). In the bottom part of the figure (part B),
the partial density profiles are also reported. Together with
the results of the particle–field simulations, in the top row
of figure 6(B), the results obtained using classical MD
simulations based on pair-wise potentials (particle–particle)
are reported.

From the picture it is clear that the data obtained from
simulations agree well with the experimental ones. From
a more quantitative point of view, partial electron density
profiles and the bilayer thickness (DHH) can be calculated
and compared with those of the reference MD simulations
and available experimental data [81–83]. Although differences
between the structures of the considered lipids are not big in
terms of bilayer thickness, the reproduction of experimental
DHH values is surprisingly good. In particular, the calculated
value for DPPC of 3.5 nm (particle–particle value 3.5 nm) is
coincident with the experimental one; for DMPC the value of
3.7 nm (particle–particle value 3.7 nm) compares well with
values between 3.8 and 3.5 nm reported in the literature [84].
For DOPC, the value of 4.0 nm (particle–particle value 4.1 nm)
for the calculated density profiles is in fair agreement with 3.7–
3.6 nm reported in the literature [84]; for DSPC, the calculated
value of 4.4 nm (the largest one among the considered lipids,
the particle–particle value is 4.1 nm) corresponds to the value
between 4.0 and 4.1 nm reported in the literature [83, 84].

In order to understand the quality of the results as a
function of the frequency update of the field, it is useful
to use the particles’ mean square displacement (MSD) as
a function of time. In the figure below, the behavior of the
square root of the MSD for water and the DPPC in units of
cell length as a function of time for different values of update
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(B)

(A)

Figure 6. (A) Total electron density profiles, calculated and experimental, for DPPC, DOPC and DMPC. (B) Comparison between
particle–particle and particle–field electron density distributions calculated for different phospholipids, respectively: DMPC, DPPC, DOPC
and DSPC.

(A) (B)

Figure 7. (A) Normalized mean square displacement (MSD) for water, DPPC and P beads as a function of time. (B) Scaling factor obtained
for lipid–water mixtures at different water concentrations.

frequencies, is reported from [62]. In this way, it is possible to
understand in a more quantitative way the validity of the quasi-
instantaneous field approximation for our models. The plot of
figure 7 quantifies how many cells a particle can cross in

a given amount of simulation time. For update frequencies
between 500 and 700 steps (corresponding to 15 and 21 ps)
both water and DPPC beads have a displacement smaller than
or equal to the cell size. These results are consistent with the
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good reproduction of density profiles and bilayer thickness for
update frequencies smaller than 700 steps.

Grouping several atoms in one effective bead determines
the length scaling between the CG and the underlying
atomistic model. For the models considered in this review,
two additional coarse-graining parameters are connected with
the representation of the field using particle positions. In
particular, we have one length scale, i.e. the grid size l, and one
time scale, i.e. the 
t between two density fields updates. For
CG models, usually, the dynamics is faster because there is
a reduced effective bead friction due to the smaller energy
barriers and/or a smoother energy landscape. In order to
connect the results with less coarse models (atomistic or CG
but based on particle–particle potentials) or with experiments,
it is necessary to connect the time-step used in CG simulations
and to derive a scaling factor for the time. For dynamics, in
general, the link between the time scales of the microscopic
reference system and of the coarse system cannot be derived
directly from the mapping scheme. A good overview of
this important aspect of multiscale simulations has recently
been published by Kremer et al as a perspective paper [85].
In the multiscale modeling literature, a few attempts have
been reported to try a rigorous mapping of the dynamics of
related CG and atomistic models. The main idea is to identify
optimal reaction or transition pathways, which govern the time
development of the systems, and form a comparison between
the atomistic and CG models to obtain the scaling factor. In
this direction, Depa and Maranas considered the escape of an
atom from one local cage of nearest neighbors to another as
an event, to which they apply the arguments derived from the
hyper-MD method [86, 87]. These approaches are possible
only for simple models, while the complications in soft matter
systems are the multitude of fluctuating energy barriers of
similar height; a common problem is that usually all barriers
are not lowered in the exact same way so that the ratios of
transition times remain the same [85].

More pragmatic methods to match time scales have been
applied to quantitatively understand and predict the dynamics
of several systems by CG models using a comparison between
the dynamical properties calculated at the CG and atomistic
level. In particular, time mapping between CG and atomistic
simulations, based on the MSD of the center of mass of the
chain for two different molecular weights of polystyrene,
has been used to calculate in a quantitative way diffusion
coefficients that are comparable with experiments for polymer
melts also in the entangled regime [85, 88, 89].

Using the same approach, the dynamics of the reviewed
CG models have been compared in a detailed way with
corresponding particle–particle models. In particular, diffusion
behavior has been compared as a function of both grid size l
and field update 
t at different compositions. Comparisons
between diffusion coefficients calculated using MD-SCF and
classical MD based on Marrink models give a faster dynamics
of the particle–field models; an example of a quantitative
comparison is reported in figure 7(B). Interestingly, the ratio
between Dparticle–field/Dparticle–particle = D∗ is a function of the
composition. In figure 7(B), the behavior of the D∗ function
of the water content is reported. The scaling factor is different

for the two components for the same system and is different
at different concentrations. Similar behavior has been found
by comparing the diffusion coefficients of multicomponent
systems obtained from all atom and CG models of mixtures
of ethylbenzene and polystyrene [90], lipids [91, 92] and ionic
liquids [93].

Another important point to consider is the ability of the CG
model to reproduce the correct phase at different conditions.
In principle, the χ and κ parameters used in particle–field
models are composition dependent. As the dependence on
temperature is unknown, it can be different for different
models and needs to be investigated. In particular, although the
MARTINI force field, having an analogous mapping scheme,
was shown to work very well for different mixtures of lipid
bilayers [94, 95], the correct behavior of particle–field models,
due to the further coarse-graining of a field representation,
needs to be investigated.

This is a general problem of the statistical mechanics of
coarse-graining procedures [96]. A comparison with simpler
Landau–Ginzburg Hamiltonians developed for magnetic
systems would probably make this point clearer. In principle,
all the thermodynamic properties of a system can be calculated
from a partition function obtained by summing the Boltzmann
weights over all possible configurations of the degrees of
freedom:

Z(T ) = tr[e−βHmic ]. (17)

Now, let us change the focus from microscopic to
mesoscopic scales. This scale is much larger than atomic lattice
spacing, but much smaller than the system size. In a similar
way to how we defined the density field φ(r) in our model,
so too is it possible to define a magnetization field �m(r). This
field is the average of the elementary spins in the vicinity of
a point r. It is possible to obtain the transformation from the
original microscopic degrees of freedom to the field variables
by transforming the original microscopic probabilities arising
from the Boltzmann weight e−βHmic .

The partition function is preserved in the coarse-graining
process and can be written as:

Z(T ) = tr[e−βHmic ] ≡
∫

D�m(r)W [�m(r)] (18)

where D�m(r) indicates integration over all allowed
configurations of the field. The different configurations of the
field are weighted with a probabilityW [�m(r)]. This probability
is what we need to find.

Using the CG weight, an effective Hamiltonian can be
defined

βH[�m(r)] = − lnW [�m(r)]. (19)

The construction of the effective Hamiltonian makes
use of several principles, i.e. locality, uniformity, analyticity,
polynomial expansion and symmetry. It is possible to show
that to describe magnetic systems it is sufficient to include
only a few terms in the effective Hamiltonian leading to the so
called Landau–Ginzburg Hamiltonian:

βH = βF0 +
∫

ddr
[

t

2
m2(r) + um4(r) + K

2
(∇m)2 + · · ·

−�h · �m(r)

]
. (20)
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(A) (B)

Figure 8. (A) Time behavior of the MD-SCF potential. In addition some representative snapshots are shown for each system. (I) System
forming a reverse micellar hexagonal phase, (II) system forming a lipid bilayer phase, (III) system forming a single bicelle and (IV) system
forming a micellar phase. (B) Detail of system (I) showing the hexagonal arrangement of cylindrical water channels in the reverse micellar
phase.

The last term of the equation is the contribution from the
magnetic work, where �h ≡ β�B and �B is the magnetic field.
It is important to stress that, since it originates from a well
defined physical system, the CG Boltzmann weight cannot
lead to any unphysical field configuration. This implies, for
instance, that the coefficient u in the equation above should
be positive to avoid the fact that the probability diverges for
infinitely large values of �m. There are also similar constraints
for the sign of terms involving gradients to avoid oscillatory
instabilities. Another important point is that the parameters
t, u, K etc are phenomenological parameters; they are non-
universal functions of microscopic interactions and external
parameters, such as temperature and pressure. In fact, we
have to account for the entropy of short distance fluctuations
that have been lost in the coarse-graining process. These
simple Hamiltonians are able to reproduce many structures
observed in lipid–water mixtures like microemulsions but also
more complicated periodic phases like the gyroid morphology
[97, 98]; however, similar descriptions of biological systems
are usually only qualitative.

In the case of the models reviewed here, the equivalent of
the mesoscopic coefficients used to describe the intermolecular
interactions can be compared with χ and κ parameters.
The dependence of the parameters on the temperature and
composition is not known a priori and needs to be investigated
for every CG model. This is an important aspect because
phospholipids show a rich variety of phase structures at
different water compositions. They can form non-lamellar

phases including the hexagonal and cubic phases, as well
as the diluted micellar phases. Hexagonal phases are tubular
aggregates and they can be composed either by normal or
reverse aggregates. Cubic phases are composed of curved
bilayers or micelles. Depending on the water concentration,
micelles change their aggregation form from normal (‘oil in
water’) to reverse (‘water in oil’) micelles. Test simulations
have shown the ability of the model in the correct reproduction
of non-lamellar phases. In particular, by varying the water
content, particle–field models are able to correctly describe
the different morphologies that are experimentally observed,
such as micelles and reverse micelles.

Figure 8 summarizes the results reported in [62]. In
particular, in figure 8(A) snapshots showing the spontaneous
assembly of reverse micelles, lipid bilayers, bicelle and
micelles going from a low to high water content, have been
obtained. Furthermore, for the system at lower water content it
has been possible to observe, in agreement with experiments,
the hexagonal packing of tubular aggregates. The formation of
these aggregates is clearer from figure 8(B).

The results of the investigation of DPPC at different water
concentrations, in comparison with experiments and reference
particle–particle simulations, indicate that the same constant χ
parameter can be employed for different compositions. Such a
model, although initially developed at water concentrations
typical of lipid bilayers, can capture the different phases
obtained for lipids at low (reverse micelle) and high (micelles)
water concentrations. We want to stress that the models are
not implicit solvent models, all the particles are there, but
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(B)(A)

Figure 9. Phase diagram for Pluronics (A) L64 and (B) L62. A snapshot of the obtained morphology has been depicted on the diagram for
each composition and temperature studied.

the interactions between them are calculated using on the fly
computed density fields. In this way, different concentrations
can be modeled in a straightforward way, just like for usual
particle based models.

It is worth mentioning that similar results have also been
obtained for a different system; in particular, very recently we
studied mixtures of different triblock-copolymers with water
at different concentrations [63]. In particular, the behavior
of the models in the correct reproduction of micellar and
non-micellar phases has been tested for Pluronic L62 and
L64. The phase behaviour of the particle–field models is
summarized in figure 9. At different polymer contents of
the water/polymer mixtures, the proposed model is able
to correctly describe the different morphologies that are
experimentally found. Furthermore, the reproduction of the
hexagonal morphology specific to Pluronic L64 has been
obtained, in agreement with experiments for L64 but not for
L62. Some of the equilibrium structures obtained using the
MD-SCF simulations of L64 and L62 Pluronics are reported
in the figure above. Although the two copolymers are very
similar, a hexagonal phase is stable only in the case of L64
in a limited region of the phase diagram. As for temperature
dependence, different behavior for our model with respect
to the average number of Pluronics chains/cluster decreases
with increasing temperature. The origin of this disagreement
between experiments and simulations can be ascribed to the
use of fixed χKK′ parameters for different temperatures. A
better agreement can be obtained using a more flexible model
allowing the correct temperature dependence of the type
χ = χ0(A + B

T ), where χ0, A and B can be tuned to reproduce
the correct experimental behavior.

Conclusions

The particle–field molecular dynamics method and its
application to phoshpolipids have been reviewed. In particular,
the description of the coarse-grained models, their validation
in the reproduction of lipid bilayer structrures and the phase
behavior as a function of water content have been given.

For these models, the use of the mean field does not
correspond to a truly field-based method or just particle–
field coexistence; the density field remains a close function
of the particle coordinates and is not an independent variable
in the free energy functional. In the hybrid MD-SCF simulation
all the particles are there; in other words, the particle
coordinates are still the underlying dynamic variables and
dictate the evolution of the system, i.e. the meshed density
field is only a byproduct and is calculated on the fly from
particle coordinates. For these reasons, the models described
show enough flexibility in the description of different lipids
and although they are coarse-grained they are still able to
discriminate different chemistry. The computational efficiency
of the particle–field method allows us to access large time
and length scales but, at the same time, without loss of the
chemical specificity. This feature makes these models very
promising in the exploration of several problems in biophysics.
Several applications related to drug delivery as well as protein
adsorption on bilayer interfaces are currently being studied.
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and Uhrı́ková D 2001 Bilayer thickness and lipid interface
area in unilamellar extruded 1, 2-diacylphosphatidylcholine
liposomes: a small-angle neutron scattering study Biochim.
Biophys. Acta Biomembr. 1512 40–52

[84] Nagle J F and Tristram-Nagle S 2000 Structure of lipid
bilayers Biochim. Biophys. Acta Rev. Biomembr.
1469 159–95

[85] Fritz D, Koschke K, Harmandaris V A, van der Vegt N F
and Kremer K 2011 Multiscale modeling of soft matter:
scaling of dynamics Phys. Chem. Chem. Phys.
13 10412–20

[86] Depa P K and Maranas J K 2005 Speed up of dynamic
observables in coarse-grained molecular-dynamics
simulations of unentangled polymers J. Chem. Phys.
123 094901

[87] Depa P K and Maranas J K 2007 Dynamic evolution in
coarse-grained molecular dynamics simulations of
polyethylene melts J. Chem. Phys. 126 054903

[88] Auhl R, Everaers R, Grest G S, Kremer K and Plimpton S J
2003 Equilibration of long chain polymer melts in computer
simulations J. Chem. Phys. 119 12718–28

[89] Milano G and Muller-Plathe F 2005 Mapping atomistic
simulations to mesoscopic models: a systematic
coarse-graining procedure for vinyl polymer chains J. Phys.
Chem. B 109 18609–19

[90] Fritz D, Herbers C R, Kremer K and van der Vegt N F A 2009
Hierarchical modeling of polymer permeation Soft Matter
5 4556–63

[91] Marrink S J, de Vries A H and Mark A E 2004 Coarse grained
model for semiquantitative lipid simulations J. Phys. Chem.
B 108 750–60

15

http://dx.doi.org/10.1063/1.2364506
http://dx.doi.org/10.1039/b602610a
http://dx.doi.org/10.1039/b911364a
http://dx.doi.org/10.1063/1.3142103
http://dx.doi.org/10.1063/1.3506776
http://dx.doi.org/10.1063/1.3369005
http://dx.doi.org/10.1039/c2sm27492b
http://dx.doi.org/10.1093/acprof:oso/9780198567295.001.0001
http://dx.doi.org/10.1063/1.459140
http://dx.doi.org/10.1021/ct200132n
http://dx.doi.org/10.1007/s00214-012-1167-1
http://dx.doi.org/10.1002/macp.201200520
http://dx.doi.org/10.1016/S0006-3495(00)76304-1
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1016/0167-8191(96)00024-5
http://dx.doi.org/10.1016/0010-4655(95)00042-E
http://dx.doi.org/10.1142/S0129183197000990
http://dx.doi.org/10.1016/S0010-4655(99)00529-9
http://dx.doi.org/10.1016/S0010-4655(99)00432-4
http://dx.doi.org/10.1016/S0010-4655(00)00054-0
http://dx.doi.org/10.1016/S0010-4655(00)00040-0
http://dx.doi.org/10.1016/S0010-4655(02)00466-6
http://dx.doi.org/10.1016/S0010-4655(02)00553-2
http://dx.doi.org/10.1007/s00366-009-0156-z
http://dx.doi.org/10.1002/jcc.22883
http://dx.doi.org/10.1140/epje/i2011-11110-0
http://dx.doi.org/10.1002/cphc.200600658
http://dx.doi.org/10.1016/S0006-3495(96)79701-1
http://dx.doi.org/10.1016/S0005-2736(01)00298-X
http://dx.doi.org/10.1016/S0304-4157(00)00016-2
http://dx.doi.org/10.1039/c1cp20247b
http://dx.doi.org/10.1063/1.1997150
http://dx.doi.org/10.1063/1.2433724
http://dx.doi.org/10.1063/1.1628670
http://dx.doi.org/10.1021/jp0523571
http://dx.doi.org/10.1039/b911713j
http://dx.doi.org/10.1021/jp036508g


Phys. Biol. 10 (2013) 045007 G Milano et al

[92] Thogersen L, Schiott B, Vosegaard T, Nielsen N C
and Tajkhorshid E 2008 Peptide aggregation and pore
formation in a lipid bilayer: a combined coarse-grained
and all atom molecular dynamics study Biophys. J.
95 4337–47

[93] Karimi-Varzaneh H A, Mueller-Plathe F, Balasubramanian S
and Carbone P 2010 Studying long-time dynamics of
imidazolium-based ionic liquids with a systematically
coarse-grained model Phys. Chem. Chem. Phys.
12 4714–24

[94] de Vries A H, Mark A E and Marrink S J 2004 The binary
mixing behavior of phospholipids in a bilayer: a molecular
dynamics study J. Phys. Chem. B 108 2454–63

[95] Baron R, de Vries A H, Hünenberger P H and van
Gunsteren W F 2006 Configurational entropies of lipids in
pure and mixed bilayers from atomic-level and
coarse-grained molecular dynamics simulations J. Phys.
Chem. B 110 15602–14

[96] Kardar M 2007 Satistical Physics of Fields (New York:
Cambridge University Press)

[97] Gompper G and Kraus M 1993 Ginzburg–Landau theory of
ternary amphiphilic systems: II. Monte Carlo simulations
Phys. Rev. E 47 4301–12

[98] Góźdź W T and Hołyst R 1996 Triply periodic surfaces and
multiply continuous structures from the Landau model of
microemulsions Phys. Rev. E 54 5012–27

16

http://dx.doi.org/10.1529/biophysj.108.133330
http://dx.doi.org/10.1039/b925780b
http://dx.doi.org/10.1021/jp0366926
http://dx.doi.org/10.1021/jp061627s
http://dx.doi.org/10.1017/CBO9780511815881
http://dx.doi.org/10.1103/PhysRevE.47.4301
http://dx.doi.org/10.1103/PhysRevE.54.5012

	1. Introduction
	2. Coarse-grained models of phospholipids
	3. Hybrid particle–field molecular dynamics
	3.1. Theoretical scheme
	3.2. Implementation
	3.3. Pressure calculation
	3.4. Parallelization scheme

	4. Simulation results of hybrid particle–field models of phospholipds
	4.1. Description of models
	4.2. Lipid structures reproduction

	Conclusions
	References

